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PATTERN RECOGNITION BY THE METHOD OF ISOCL.JES:   I. A.  MATHEMATICAL 

MODEL FOR THE VISUAL INTEGRATEE PROCESS 

W.  C.   Hoffman 
Mathematics  Research Laboratory 
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Abstract 

A  theoretical model  for the visual intcgrativc  process is advanced 

that is based upon microelectrode studies of the animal visual cortex 

by Hubel and  Wiesel, Jung, and  others.     In this  theoretical model  the 

cortical columns of direction-sensing elements   found by Hubel and Weisel 

are interpreted as sets  of isoclines making up the visual  field.    The 

form of a visual image corresponds  to a family of contours  ("orbits"  or 

"paths",  in the terminology of differential equations)   that pass  through 

those isoclines stimulated by the corresponding retinal  regions.    A con- 

tour of an image is thus approximated in the visual cortex as an iso- 

clinic polygonal arc. 

Hubel and Wiesel's microelectrode studies are thus strongly sug- 

gestive of a differential equation interpretation of the visual inte- 

grative process.    The invariance of the visual integrative process under 

rigid motions   (translation and rotation) and perspective that is required 

by the psychological phenomenon of Gestalt enables us to specify the 

particular form of the differential equations involved.     The latter 

then'permit a ready explanation of ouch visual phenomena as McKay's 

complementary after images,  the whirling spiral images evoked under 

flicker, and the alpha rhythm and its desynchronization. 
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I.       INTRODUCTION 

Historically,   pattern   recognition has  been  synonymous  with statis- 

tical classification.    A pattern is abstracted as a point in a  finite- 

dimensional sample space,   the dimensionality  of which corresponds  to 

the number of identifiable  characteristics  of the  pattern.     The   procedure 

for pattern recognition then Involves  partitioning the n-dimensional 

sample space in such a way  that the sampl«   points  representing one class 

of patterns are essentially separable   from  tho   region associated  with 

any other class.    As such,   this is a generalized   form of the statistical 

problem of classifying an observation into one  of finitely many popula- 

tions  (Anderson,  195ß,  Ch.6;  Rao, 1952, Chs. 8,9;  Sebestyen,  1962; 

Abramson, 1963;  Braverman,  1963). 

Certain aspects  of this  approach  run counter to what one   ordinarily 

thinks of as constituting a "pattern", namely,  some sort of connected 

configuration without essential discontinuities  in its geometry,  smooth- 

ness,  symmetry or the like.     An optical image,   for example,  may be 

thought of as a collection of contours   (or paths) .    It is not clear 

that the optimal  recognition procedure lies  in abstracting this  image 

to a single point of a higher-dimensional space obtained from a sub- 

division of the image into    n    rectangular elements.    In  fact Swerling 

(1962)  has given arguments  indicating that analysis of a random surface 

in terms of contours requires appreciably less information,  and similar 

economies have been noted by Attneave and Arnoult   (19%), Capon (1959), 

Unger (1959), Wholey (1961),  and others. 
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For auch patterns as  optical   (or visual)   image?   it seems clear 

that the character!zatioii would be improved by retaining their con- 

figurational aspects.    Since an image may be characterized by the 

arrangement of contours in it,  the usual finite-dimensional character- 

ization of  classical pattern recognition theory should be improved by 

taking the  full geometry into account.    A number of approaches are- 

then possible. 

Each contour in the figure can be considered as a point in an 

infinite-dimensional space, namely the semi-Banach space of curves 

(Frechet,  1962).    This approach may be particularly well suited to 

a generalization of the classical  pattern recognition method of sepa- 

rating regions corresponding  to the various classes by means of finite- 

dimensional hyperplanes.     The question of linear separation (classifi- 

cation by a separating hyperplane)   of subspaces of reflexive Banach 

spaces has  recently been settled by James  (196/0. 

However,  the less abstract approach embodied in contour repre- 

sentation by meens of tricoordinates (abscissa,  ordinate, and slope) 

(Attneave and Arnault, 1956)   apparently has more far-reaching impli- 

cations for such pattern recognition phenomena as  the visual Integrative 

process.    Our study of pattern recognition will therefore be couched 

largely in terras of tricoordinates,  or direction-field elements. 

Still another approach,  that in fact is c] osely related to that 

of tricoordinates  (especially in the recognition aspect itself),  follows 

from regarding visual patterns as Markov processes in time and space. 
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The work of Reu tier  (1963)   leads  naturally   to such in  interpretation, 

once the statistical decision problem arising out of the association 

between differential  equation and contour comes under consideration. 

We note that trajectories are involved  in both approaches. 

As noted abov?,   the tricoordlnates  of a  point on a  curve  consist 

of the rectangular coordinates of the  point and  the local  value   of 

the derivative 

(x,y, 1$, (1) 

A well known result from the theory of differential equations  (Bieber- 

bach,  1956,  p.   27)   states  thht an approximative polygonal arc  made   up 

of    n    such elements,   each of which consists  of a point and the asso- 

ciated local  tangent,   can be made to approach arbitrarily dose  to an 

integral curve  of the differential equation 

$-rU.y), (2) 

so long as     f    remains  continuous.     The  essential  feature of our  theo- 

retical model  for the   pattern recognition process is   the approximation 

of a contour by such a polygonal arc  as   that described above.     Form 

vision rather than brightness is  of primary interest in  the present 

context, and color vision is not considered  at all.    Brightness  is 

in principle readily taken into account by including in  the  ^orm 

character specified by     f(x.y)     in  (?)   the  frequency of  firing  of the 

particular neurons involved (Rushton,  1961;  Jung, 1961 a,b). 

i  mamaemmusmumm - m ■            ■mi ■■   '      - -'■  ■ 



As will be tfhown below,   the polygonal arc approximation to a 

shape leads naturally,   in the context of tne visual integrative  pro- 

cess,  to the graphical integration  technique known as  the method  of 

isoclines  (Andronow and Chaikin,  19A9j  Cunningham,  1958;  Kaplan,   1958). 

The aestclt character of visual pattern  recognition c.emands  invarianres 

of a type associated with Lie groups  (Cohn,   1937; Ince,  1956;  Kowalewski, 

1950; Lie and Scheffers,  1893; Yano,   1957).     Invariance under the  appro- 

priate Lie groups  tells us what particular  form the differential  equa- 

tions must have.     The  theory of these differential equations  is  then 

developed and  related   to such visual  phenomena as Jung's    A,B,C,D,E 

type neurone  (Jung,  1961 a,b) ,MacKay's complementary- after images,  the 

alpha rhythm and its desynchronization,  and  the whirling spirals  often 

evoked under flicker (Walter, 1953)«    S.'gn reversal in this system of 

differential equations governing the visual integrative process  is 

apparently closely related to such conditions as developmental dyslexia 

(Bender, 1957; Money,  1961; Stuart,  1963),  but a complete discussion 

of this will be  reserved  for a separate  publication.     The  statistical 

decision theory aspects of pattern recognition via the method of 

isoclines will also be only briefly taken up in the present paper. 
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II.     MICROELECTRODE EXPLORATION  OF THE VISUAL CORTEX 

The use of mlcroelectrodes   for ckep penetrations  of the   animal 

cortex in  the manner of Mountcastle   (Mountrastle,   1957;   Powell and 

Mounteastie,   1959)   has  provided neurophysiolcgists  with a  powerful 

new tool  for determining  the  response  characteristics  of single  cor- 

tical neurons.    Microelectrode studies  have bef n made  of the cat 

auditory pathway (see Katsuki,   1961,  and  the  references  cited  there); 

the somatic afferent system in cat and  monkey  (Mountcastle,   196l); and 

the visual  pathway in the cat  (Rubel,   1963a; Jung,   1961 a,b) -     It is 

primarily the latter that will concern us here. 

In  their series of microelectrode studies  of the animal  visual  path- 

way Rubel and Wiesel (Rubel and Wiesel,  1962; Rubel,   1963 a,b)  mapped 

out the microresponse  fields  in the brain unier stimulation  of the  retina 

by very small  patterns  of light.     The visual stimulus  is  initially pro- 

cessed  by the  retinal cells  in  the vicinity of the  illuminated spot.     In 

this  processing the phenomenon of lateral inhibition plays  a  prominent 

role.     The visual stimulus  is  then  transmitted along  the  optic nerve 

and  through the lateral geniculate  body  to the striate   (or visual)   cortex. 

The cells  in  tiie retina and  the lateral geniculate  body have  a predomi- 

nantly circular response  (fig.l)   of either excitatory or inhibitory type. 

The shape  of the  response surface looks   very similar  to  that   for a single 

cable in a multi-channel telephone  cable, where very small sideband levels 

are used to reduce crosstalk. 

— 
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Kig.  1    Circular response of receptive  fields  of the  lateral 
geniculate body,     (x,  areas giving excitatory  -"on"- 
responses; A,  areas giving inhibitory  -"off"-  responses) 
From Hubel and Wiesel  (1962). 

The cells  in the striate corte;r  on  the  other hand  respond  in an 

entirely different manner,  being arranged  in fields with highly linear- 

responses  (fig.   2).     One type of such  fields,  termed  "simple",   responds 

only when the linear light stimulus encounters  the boundary between its 

inhibitory and excitatory sub-fields.     The  response is  strongly direc- 

tional,  an angular difference of at most    10    (and usually considerably 

less)  between tne axes  of linear light source and  receptive  field being 

enough to annul  the  response. 

The second   type of receptive  field,   termed "complex"  by Fhabel and 

Wiesel,  is also highly orientation sensitive, but Is characterized by 

exhibiting a sustained response as  the lignt stimulus is moved over 

relatively large  regions of the  ratina.     The complex fields  behave 

as if they received  their afferents  from a large number of  the cortical 

cells in simple  fields, all of which have essentially the same axis 

orientation but which vary slightly among themselves in retinoptic pro- 

jection. 
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Fig.  2.    Linear response  of receptive  fields  of th<   visual 
cortex,     (x,  areas giving excitatory  -"on"- nsponsts; 
A, areas giving  inhibitory -"off"-  responses.    Receptiv« 
field axes are   indicated by continuous  lints  through 
field centers.)     From Hubel and  Wiesel  (1962). 



Apical segment 

Fig.  3.     Reconstruction of microelectrode penetration through the lateral 
gyrus  (from Hubel and  Wiesel (1962)).    The electrode entered the 
apical segment normal to the surface and advanced parallel to the 
deep fiber bundles  (indicated by radial lines) until white matter 
was encountered.    In the further advance of the electrode through 
the gray matter of the mesial segment the course was oblique.    The 
receptive field orientations of the cortical cells are indicated 
by longer lines  transverst   to the electrode track; crossbars at 
the right hand end of the lines indicate axons.    Approximate posi- 
tions of receptive fields  on the retina are shown to the right of 
the penetration.    Short lim s transverse to the electrode track 
indicate unresolved background activity. 
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Receptive field axes* of all orientations are found  in the  visual 

cortex, the only apparent regularity consisting of alignment eithfr 

nearly parallel or nearly perpendicular to the  radial  fiber in  the 

immediate vicinity.    This  feature is evident from figs. 3,4,5,  repro- 

duced here from Hubel and Wiesel (1962)  and Hubel (1963D). 

Apical segment 

Fig. L*    Reconstruction of two penetrations  in the apical segment 
of the post-lateral gyrus, near its anterior end  (from 
Hubel and Wiesel (1962)).    Legend as for fig. 3.     Note 
the abrupt transition from receptive fields  parallel to 
the radial fibers  to transverse receptive  fields in the 
terminal portion of the rightmost track. 

* The receptive field axis is a hypothetical line  through the center of 
the receptive field and directed along the boundary between excitatory 
and inhibitory regions  (fig. 2). 
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The principal characteristic that distinguishes complex fields 

from simple fields is that the former respond with sustained firing 

to moving lineal stimuli.    The simple fields, responsive only at the 

boundary between excitatory and inhibitory regions (fig.  2), fire on 

the other hand only for the relatively brief period when the moving 

stimulus crosses the boundary.    It would thus appear that the relatively 

great sensitivity of the visual cortex to moving stimuli is intimately 

bound up with the complex fields. 

The cells themselves, simple and complex, are apparently   arranged 

in cylindrical columns jarpendicular to the local cortical surface. 

The column axes seem to be essentially the same as those of the deep 

fiber bundles.    Within these columns, the receptive field axes appear 

to be conjugate (that is, each other's orthogonal trajectories)   (figs. 3 

and 5), some axes being (essentially)  perpendicular to the local deep 

fiber bundle, the others (essentially)  parallel to it. 

The projection of retinal regions upon the visual cortex is 

ordered, i.e., the receptive fields contained in a given cortical 

column respond to corresponding portions of the two retinas.    Hubel 

and Wiesel (1962)  state that within such a column defined by common 

orientation of receptive field axes there is no apparent progression 

la field positions along the retina as the electrode advances, and 

conclude that at the microscopic level the retinoptic representation, 

within a given cortical column, no longer strictly holds.    Hubel and 

Wiesel do detect an apparently random staggering of receptive field 

■  ■    ■     ■ .■    ' ■ .     ■    ■ ■ 
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Flg.  6. Reconstruction of portion of electrode track through apical and 
mesial segments of post-lateral gyrus near its anterior end made 
during multiple recordings (after Hubel and Wiesel (1962)). 
(Only the first twelve cells are represented.    Broken cv*ves 
indicate the boundaries of layer A»)    The overlapping rectangles 
in the leftmost part of the figure display the superposition of 
receptive fields upon the retina, whose coordinate system appears 
directly above (origin referred to area centralis). 

The progression of similarly-oriented receptive fields is shown 
in the central portion of the figure.    The rectangles  outlined 
with broken lines are the receptive fields.    The crosses indi- 
cate the relative position and bearing of the corresponding 
area centralis.    The numbers to the right give the field sequence: 
1-12.    The field following field 12 is apparently transverse to 
an adjacent radial fiber.    The arrows show the preferred direction 
of movement of a slit oriented parallel to the receptive field 
axis. 
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The resemblance of these cortical columns of oriented direction 

fields to the method of isoclines (or "direction field method")   for 

the graphical solution of differential equations (Andronow and Chaikin, 

1949; Cunningham, 1958; Kaplan, 1958)    is indeed striking (fig. 7). 

Regarding an optical image as an ensemble of contours, we hypothesize 

the following theoretical model for the visual integrative process: 

The whole visual field is permanently filled up with tiny 

directional elements that are essentially isoclines (elements 

of sane slope)  arranged in cortical columns.    A visual image 

stiaulates only those isocline nets that correspond to forms 

in the image.    The ensemble of slope elements corresponding 

to a given image contour thus comprises a polygonal arc 

approximation to the solution of the differential equation 

defining that image contour. 

The significant feature is that, in terms of what actually happens in 

the visual cortex, the image is characterized not so much by the forms 

that make it up but rather by the differential equations  (and initial 

or boundary conditions)  that govern these shapes.    The visual cortex 

thus seems to possess a built-in structure for graphical integration 

of the differential equations of visual forms. 

•nie many other mlcroelectrode studies of the cerebral cortex and 

the visual pathway that have been made are well described by Amassian 

(1961) and Jung (1961, a,b).    These studies have been voluminous, but 
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only those aspects  that bear directly upon our theoretical model  will 

be summarized here.     In particular the work of Jung and his school 

(Jung,  1961 a,b)   seercs  to have very direct implications  for the   kind 

of excitations appropriate to our theoretical model.    In addition 

these papers are notable for a thoroughgoing summary of the connec- 

tions between the neurophysiology of the feline visual cortex and the 

psychophysiology of vision in man. 

mill I -A 

Figure 7. The method of isoclines.    Small arrows indicate 
directed slope elements.    The isoclines are the 
raO.ial lines, each of whose  slope elements are 
parallel.   (After Andronow and Chaikin (19A9)). 

Jung (1961 a,b)  distinguishes  five classes of cortical neurons 

according to their characteristic excitation-inhibition response under 

either diffuse or patterned light stimuli.    Type A neurons are in a 
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class by themselves.    They fire regularly at a frequency of from 8 to 

15 discharges per second but show no response to either light or darkness 

They are apparently driven by nonspecific reticulothalamic stimuli and 

constitute a w... medium background of excitation in the cortex..." 

(Jung, 1961a, p. 631). 

Type B,C,D,E neurons on the other hand are light (and/or dark) 

responsive, and are classified according to their characteristic response 

under illumination of the retina.    Type B and D neurons are apparently 

duals (antagonists)   of each other.    The type B neurons impart brightness 

information! they are activated by light and inhibited by darkness. 

The type D neurons on the other hand impart relative darkness informa- 

tion} they are inhvblted by light and activated by darkness.    Type C 

neurons are inhibited at both the onset and termination of a light 

stimulus.    Type E neurons show a relatively long-delayed response to 

a light stimulus but a strong rapid reaction to the cessation of light. 

The responses of the C and E neurons appear on occasion to complement 

each other in somewhat the same way as the B and D neurons do (Jung, 

1961 a, Fig. 3| Jung, 1961 b. Fig. l). 

Although the shapes in the visual image constitute the forcing 

functions for the differential equations of the visual integrative pro- 

cess, it is the several categories just defined that determine the 

microtime behavior of those cortical neurons stimultited by the image. 

It is this latter aspect of the neuronal behavior that will be needed 

for relating our theoretical model to such phenomena as the alpha 

rhythm and its desynchronization. 
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III.  THE METHGD OF ISOCLINES AND ITS CONNECTION WITH THE VISUAL 
INTEGRATIVE PROCESS 

I 

In the graphical Integration method using isoclines successive 

numerical values of the quantity    m    are  first computed according to 

- tha equetion 

m = f(x,y), (3) 

where    f(x,y)     is given by (2) .    The value of   ra    thus determined for 

the point    (x>y)     is then assigned to the slope at that point.    A curve 

connecting all points at which the slope has the same value  is called 

an isocline.    The effect of this procedure is to reduce the differential 

equation (2)   to a sequence of equivalent algebraic equations  of the form 

(3)» which then specify the locus of those values of    x    and    y    along 

which the integral curves of (2)  have a particular slope (fig. 7). 

Thus,  once an isocline is plotted in the    x,y-plane,  one can pick 

out a set of line elements along the isocline that have the prescribed 

slope    m.    The value of   m    is  then changed and another isocline curve 

plotted, and so on.    The result is  to eventually fill up the ei-tire 

x,y-plane with isoclines, each carrying directed line elements of a 

given slope (fig. 7). 

Next one starts  from a given initial point and sketches a smooth 

curve, always  following the slope of successive line elements in adjacent 

isoclines.    This procedure yields a graphical solution of the initial 

value problem.    A different initial value will in general lead to a 

different graphical solution.    The process is in principle capable of 

i 
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any prescribed degree of accuracy, depending upon the scale,  the distance 

between adjacent isoclines, and the total number of slope elements along 

each isocline. 

It thus appears from Hubel and Wiesel's microelectrode studies  (Hubel 

and Wiesel,  1962)   that the visual cortex carries a direct counterpart 

of an isocline net,  the slope elements being Hubel and Wiesel's simple 

fields and the isoclines the cortical columns.    The shapes  in an object 

imaged on the retina are identified as  the envelopes of the corresponding 

cortical fields  that are stimulated.    Tracing through the isocline net 

that is ntinulated is the analogue of the sKetching process described 

in the preceding paragraph. 

Such a model for the visual integrative process has many points of 

contact with the psychophysiology of the visual integrative process.    It 

is well grounded on neurophysiological realities.    It leads at once to 

explanations of such phenomena as the visual images evoked under flicker, 

MacKay's complementary after images  (MacKay, 196l)   the alpha rhythm and 

its desynchronization, the specific language disability known as develop- 

mental dyslexia (Bender, 1957), and the visual Gestalt (de Hirsch, 1962). 

The latter appears in its simplest aspects as the invariance of the 

differential equations of the visual integrative process under the appro- 

priate Lie transformation groups.    Memory and the more complex aspects 

of the visual Gestalt, however, apparently require statistical decision 

and prediction theory for the most general sort of concepts in Lie 

groups and differential topology (Ausländer and Mackenzie,   1963J Munkres, 

1963; Steenrod,  1951? Yano, 1957). 

. 
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IV.    THE DIFFERENTIAL EQUATIONS OF THE VISUAL INTEGRATIVE FROCKS 

The isocline interpretation of Hubel and Wiesel's  mi c roe lee trod e 

studies  implies  that the visual integrative process  is  based upon some 

first order differential equation  (or equations).     The  question then 

arises   - which first order differential  equations?    The   answer in  pro- 

vided by the Gestalt requirement  Lhat the visual  image   be   invariant, 

i.e.,  still recognizable as an entity, under rotations,   translations, 

and perspective transformations  (magnifications,   or dilatations).     We 

therefore seek those differential equations whose  family of solutions is 

invariant under the combined group of rigid motions   (translations and 

rotations)   and magnifications.     The determination  of these invariant 

differential equations  thus  reduces  the problem to an elementary com- 

putation in the theory of Lie groups. 

That the  features of the  visual Gestalt  (de Hirsch,   1962)  must 

involve invarianee under a group of transforations has  been recognized 

by several investigators   (Pitts and McCulloch,   19A7J   Culbertson,  1957j 

Rashevsky,  I960).    Pitts and McCulloch viewed a pattern of stimuli as 

the arithmetic mean of a functional over all  the  transformations  of 

the finite group involved.    Culbertson considered  possible neuronal 

networks  that would generate,   in the limit of translations,  stimulus 

patterns invariant under translations,  rotations,  and magnifications. 

Rashevsky's approach was based  on an interaction of several central 

complexes  of neuroelernents  in such a way as  to produce  the desired 

invarianee at a higher,  coordinating center.    However,  none of these 

i 
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«tudlea introduced the Lie group aspect, and It is believed that this 

is the essential new feature that provides the key to the actual workings 

of the visual Integrative process. 

It will be assumed that the Lie groups and differential equations 

involved are 2-dimensional.    An optical image on Jie retina is a 2-dimen- 

sional napping of the 3-dimensional world, and although nonplanar, can 

be thought of as a 2-dimensional manifold*.    As Davson (1949)  puts it, 

"The retina has  •.. become specialized by the development of apparently 

veztical and horizontal meridians} these act as a pair of rectangular 

coordinates through the fovea to which the position of any point or line 

is referred." 

1 •      Resume, of Essent^fjLs of fcie, Groyip ^9*7 

We shall here review briefly only those aspects of Lie group theory 

that will be needed in the application to Gestalt psychology made below. 

The reader will be assumed to be acquainted with Ch. IV of (Ince,  1956) 

or its equivalent.    A complete treatment of the classical projective 

group may be found in (Lie and Scheffers, 1893)  or (Kowalewski, 1950). 

A reader interested in a modern abstract treatment of Lie groups is 

referred to the monographs by Cohn (1957)  or Nomizu (1956), or to 

(Auslander and Mackenzie, 1963). 

The transformation in the plane 

(Xj^) ~ Td(*»y)  = (g(x,y), h(x,y)) U) 

» A manifold is a connected compact topological space that is locally 
Euclidean. 

, 



17 

const!tux      a group if it has the usual group properties  (closure, 

existence of identity and inverse, associativity).    The subscript    d 

denotes a parameter (which is also understood to be in the arguments 

of   g    and    h) .    When    T    1    (x,y)  = T 
Ö2Ö1 VÖ1 

(x,y),  the family  (A)  of 

transformations is said to form a one-parameter continuous group, 

denoted by    G, .    A Lie ^roup is a continuous group on a differentiable 

manifold suc^  that the differentiability properties are consistent 

with the group properties. 

The differentiability structure enters via the infinitesimal 

transformation (or generator)   of the group.    Thus the system of dif- 

ferential equations  equivalent to (2): 

±/x\     /PU,y)\ 

Hy/     W.y/ Q/p - f(x,y), (5) 

written in the form 

W/   w 
can be thought of as an "infinitesimal transformation" 

(x1,y1) = (x + 6x,y + by) = (x -^ P(x,y)6d,y + Q(x,y)&ö).    (6) 

Each transformation  of the group can be  obtained by iterating the infini- 

tesimal transformation    {x,y)-* -+ (x -^ &x,y -'■ &y)    a sufficient number of 

times.    In this sense  (6) defines  the infinitesimal generator of the 

group. 

"tiMfefiniWritiiltliiMHliriiitrtri ir - 
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If we consider the variation induced on an arbitrary differentiable 

function by the infinitesiraal transformation (6)  of the space variables, 

we obtain the following representation for the infinitesimal generator 

U   of the group: 

(7) U = P(x,y)|r + Q(x,y)^. '9x 

In particular,    Ux = p(x,y) ,Uy = Q(x,y),    so that an alternate form 

for (7) is 

U = (Ux)JU (Uy)^ (8) 

The finite equations of the group are given in terms of   U    by the 

Naclaurin series 

a> 

Ffx^y^d) = F(x,y) + 2 {VpDtf/nl = eüF, 

where   VT    indicates an n-fold application of the operator (7).    In 

particular the finite equations for the space variables themselves 

are 

(9) 

00 

,n \ n x, = x + 2 (U x)d /nJ, 
1 1 • 

,n %   n 
7. =y + 2 (Uy)<37n! 

x 1 
(10) 

We turn now to the matter of invariance urder a Lie group, and 

fix'st of all define invariance of a function   F(x,y)    under the action 

of the group.    This means that if    (x,y) -♦-♦ (x^y,)    under some 

operation(s)  of the group,    F(x1,y1) = F(x,y)    for all    ö.    A   n.a.s.c. 

for invariance of a function    F   under a group   G, whose Infinitesimal 

generator is    U, is that   UF 5 0,    which is, formally, a partial dif- 

ferential eouation. Hence every one parameter group   G,    in two variables 
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has  one and only one Independent Invariant 

C = F(x,y), (11) 

obtained by solving the system 

PT^T 
= Ql^T 0 (12) 

It is clear that if    P = 0 = Q   for some point    (xn,yJ,    then 

regardless of what   F(x,y)    may be,    UF(x0,y0)  = 0,    and    U^yJ    is 

a fixed point of the transformation.    Such points are said to be absolute, 

or point,  invariants. 

An integral curve of the differential equation   ?*• = ^/?   is generated 

by successive applications of   U = Pr- + Qs—,    starting from some initial 

point.    Hence the family of integral curves (11)  is invariant under the 

group, and is said to display curve invariance. 

A family of curves may also be invariant in the sense that the 

individual curves, while shifting under   U, still m,ke up the same family 

as before.    A n.a.s.c.  for family invariance is that 

UF = f(F), (13) 

where  ^(F) is an ordinary function of F. Thus, for example, for 

the rotation group 

x, = x cos ö - y sin ö ,    y-i = x sin d + y cos a ,   (l^) 

whose infinitesimal generator is 

TT -        a  ^     8 Urot. - - ^ + xäF ' (15) 

■ . 
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we have, letting   F = y/x,    that 

UF = (y/x)2 + 1 = F2 + 1. 

That Is,     f = 1 + r |    thus establishing the invariance, under rotation, 

of the family    y/x = const, of straight lines through the origin. 

If    F,(x,y,z) = C,, F5(x,y,8)  = C-   are two independent solutions 

of the partial differential equation 

U'F = P(x,y)g + Q(x,y)§ + 2(x,y,8)|? = 0, ax ^z 

then the most general equation invariant under the group whose Infinitesimal 

generator is    U    is of the form   <1>(F1,F ) = 0,    or in solved form,    F   = T(F,) 

This result is basic to the determination of the class of differential equa- 

tions Invariant under a given Ide group. 

It can readily be shown that the augmented transformation 

3^ = g(x,y;ö),      yl = h(x,y;ö),     y| = pUjyjy'jö), 

acting on the tricoordinates    (x^y1)    in the plane, forms a group. 

This group constitutes the extended group of the given group   G..    Its 

infinitesimal generator is 

^ = P(x,y)^+ Q(x,y)^:+ Zixfytr)^T > 

where ZCx^y') is given by the formula 

Z(xy y>) =^+  (^- 2L) y' -^v'? 
Äix,y,y /      »^ T  ^A,, " ft^' y    * A«, y    • 

(16) 

Px       cy     9x Py (17) 

_,. Aailri  lii^i'rHil^'rflir' 
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We are now In a position  to determine the form of those first order 

differential equations invariant under a given Lie group. 

Suppose then  that 

FU^y')   = 0 (18) 

is a general first order differential equation invariant under the 

extended group (l6) .    The n.a.s.c.  for this invariance ij  the relation 

U'F = 0, (19) 

which of course holds, either of itself or by (18).    This is a partial 

differential equation whose general solution requires two particular 

integrals of the system 

.dx ,   =    ,dy y   =    . dy'    . (20) 
PTT^T      QUOT     Z(x,y,y')   * U0; 

If    F,(x,y)  = C,     is a solution of the first pair of equations,  then 

F,     is independent of    y1     since    F    and    Q   are.    Now suppose 

F_(x,y,y')  = C      is a solution of the full system, and so necessarily 

involves    y'.     If    H(F,)     denotes an arbitrary function of    F, ,    the 

new function 

F = F2 - H(F1) 

satisfies the partial differential equation (19), i.e.,    U'F = 0    for 

this    F. 

The groups that we have mentioned as basic  to the visual Gestalt 

(rotation, magnification,   translation)  are each subgroups of  one 

general projective group of the plane.    The finite equations of the 

. 
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projective group 

a.x + b.y + c1 

agx + b^y + Co' a-x + b-y + c* (21) 

define an S-perameter continuous group that takes straight lines into 

straight lines and leaves at least one point of the plane fixed (Lie and 

Scheffers, 1893).    Through this fixed point there passes an invariant 

line.    The infinitesimal generator of the general projective group is a 

linear combination of the eight operators 

ea        0        6 d        d     2   & P P       2   0      ,0^ 
8»' ?9 * 5? y ^ x ^ y ?? x   ST + ^ ^ ^ ST + y   8y>   (22) 

The most general projective transformation of the plane that leaves the 

line at infinity (in visual terms, the horizon)  invariant consists of a 

linear combination of the first six subgroups in (22)  (Lie and Scheffers, 

1893). 

Certain linear combinations of the subgroups (22) will be of 

especial interest from the standpoint of the visual Gestalt.    These 

may be conveniently summarized in the following table; 

Group Infinitesimal Generator Finite Equations 

Rotation 

Magnification 
(or similarity 
or perspective) 

Translation 

Mgid motions 

Affine (or 
linear group) 

(15) (counterclockwise)  or 

y r~ - x s-   (clockwise) 

dx ay 

ax    Y ay 

a 8 
^(x£-y£)+*2£+«3 8y 

(<ll v V + V^ 
8 - (?! + v4 w 

I'tlMntmViiihtri'iilHriUfiiniriiaii  —tm*—~— 

(1A) or x. = x cos d + y sin a, 
1 (23) 

y,=-x sin ö + y cos c^ resp. 

x^^ = e x, y^^ = e y (2^) 

Xj^ = x + ö, yj = y + Yö        (25) 

x. = x cos 9 - y sin 6+ a, (26) 

y, = x sin 6 + y cos 9 + b 

Xj^ = (a^ + ^y + c1), (27) 

y^^ = (a2x + b^ + c2), 

*l\ - a2bl ^ 0- 
iiiiMiüifftti'"' 
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2.      Invariant Differential Equations of the Visual Integrative Process 

Since the visual Gestalt demands  that images be recognizable by their 

intrinsic over all character, however they be presented to the viewer 

(within certain limits),  the similarity and rigid motion groups,   (2/0 and 

(26), will be basic  to our further considerations.    We therefore consider 

the following infinitesimal generator 

U = (- y ax + x ^  + (9l + r ^   + p(x 3^ + y 97h 

or 

U = (px - y + 1)~ + (x + py + v) A (28) 

which combines the infinitesimal generators  of rotation,  translation, 

and magnification groups in sufficiently general form, and seek the 

most general differential equation invariant under the combined group 

of (28). 

According to (17)   and (20)   the invariant differential equations 

may be determined from the system 

dx iz. dy' 
2* 

px-y + 1      x-ipy + Y      1 + y' 

The change of variables 

pu-v^ px-y+1, u+pv=x+py+r 

takes (29)  into the equivalent system 

du      _      dv      _      dy' 
= " 2 ' pu-v     u + pv      l-^y' 

(29) 

(30) 

(31) 



^:$*^vm»mimwr' r-w  
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According as we consider 

= v/y or w = v/a = l/z, (32) 

as the dependent variable we obtain two different forms of the first 

pair of eqs- (31).    That is, 

1» = .. i 1 -»• a2       or   dw = I 1 -f w2 

dv '   " ▼   z + p ' du '" u   p - w * 

Separating variables,  one obtains the respective equations 

dv      z + p 

"  T  ' 1 + z2 
dz, and du _   p - w 

u 1 + w' 
dw, (33) 

which nay be integrated by quadratures. 

Thus, the first equation has the solution 

^T = a + D^^^ca - iz)^1«^ 

or 

Ö = (u2 + v2)^" expfarctan ^). (3A) 

or 

Sinilarly, from the second equation of (33) > 

cyuMi + iw^^^d-iw)^1-1^, 

C  = (u2 + v2)* expl- arctan ^] = e^C. (35) 

With    z   and    w    as new variables the system (31) may be written as 

(36) dz     „     dw     =     dy1 

r 2 2 2  ' 
1 + z*     1 + w^     1 + y'^ 

HI 
,—....^^—,>„. „..     .^.^     Mtotmmmmkmatääiimi . 
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The pair consisting of the first and  third of eqs.  (36)  has  the solution 

arc tan z + arctan y1  = ©((?) , 

or 

2 ■>• y'   _ .      ^//3\   _      r., f 2       2     f.T*ctan(u/v)>v -,        J , = tan ©(C)   =  - Q(s/u    + v     e '     ) , 

where    Q    is an arbitrary function of the arguments shown.     Solving for 

y' = dv/du, we obtain the following form for the most, general differential 

equation admitting the group of (28): 

,         ,                    „/ / 2   ,     2    arctan(u/v)N d^ _ dv .. - u - QUu    4 y    e    '     ) v 
dx.      du 

0/ / 2        2    arc ,an(u/v) x 
- Q(N/U    ■♦• v    e '     )u 

(37) 

The other pair of equations in the system (36)  yields  the solution 

arctan w - arctan y'  =©((?) . 

This equation can be solved in a similar manner to obtain the form 

of the most general 1T   ariant differential equation governing the con- 

jugate curve: 

r-r —j    -a re tan (v^/u^) 
dy        dv       -v + ^ Uu    + v    e )u 

dx        du i „       -z    -arctan(v /u ) 
-u  - i2 ,/ 2        2 («Vu    + v    e 

(3a) 
)v. 

If furthermore the form of    fl      is such that at ' (u,v) , 

Q 
/ / 2        2    -arctan(v/u)x   _      n/ / 2  ,     2    arctan(u/v)x       , ^.^^ (Vu    + v   e v '   ')  = _ ^(Vu    + v    e )>    (39) 

then (38)  and  (39)  do in fact determine curves  that interest orthogonally. 
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The p»ranietric form of the invariant differential equations (37) 

and (38) is as follows: 

and 

d_ 
do o-(::.:)(:)• 

-1    - Q v yU 

(AO) 

(AOJ 

The corresponding second order systems are then 

( d«2 ^ ^O-C "DO 
du dv /    \ or, Introducing the expressions for   -rr   and   TT     from (AO), do dö 

(4+[1 + a4.fl2] 
d<j' 

d« ')(>»(: x)' 
and 

(a) 

(^2) 

(£-.-;.)CH^)CX)- --• 
The form (Al) is best suited for analyzing the microtime behavior 

of the    (u,v)-field.    Expressions (£L )  and (42) display the coupled 

nonlinear oscillatory behavior characteristic of the visual integrative 

process.    Recalling that the invariant argument of   Q   is essentially 

of the form    -Ju   + v   exp[- arctan(v/u)},    we see that   (Al )  and (^2) 

can be thought of as a sort of vector Lienard equation in which each of 

the field variables acts as forcing function for the other. 
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V.       VISUAL PHENOMENA ASSOCIATED WITH THE DIFFERENTIAL EQUATIONS OF THE 
VISUAL INTEGRATIVE PROCESS 

1.     j^3S&£Sj^2iS£ä^Sä££>.^^£^££>^MlSd3^^2B 

A standard procedure during the taking of an electroencephalograph 

is  the^illumination of the closed eyes of the subject by periodic flashes 

of light at about the frequency of the alpha rhythm.    Under such cir- 

cumstances a whirling spiral image is often evoked, ani "whirlpools, 

explosions, Catherine wheels" are also seen (Walter,  196,3, p. 101). 

It is known that a sudden flash of light into the eyes will stimu- 

late the brain into damped electrical oscillations whose frequency is 

approximate!/ that of the alpha rhythm (Wooldridge, 1963, p. 109). How- 

ever,  the repetition of such light pulses at a frequency near the 

critical flicker-fusion frequency apparently results in a constant 

stimulus, as it appears to the visual cortex.    In such circumstances 

the visual differential equations  (37)  and (38)  provide a direct ex- 

planation of these evoked phenomena in the following way: 

Let    Q ~ const, in (37), say,  i.e., regard the stimulus as persisting 

over the whole visual field. Then (37)  can be written in polar coordi.iates 

as 

J4P= + ß. U3) 

The solution of this equation is the logarithmic spiral 

r = r0e      . (U) 
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The companion differential equation (38)  also yields a logarithmic 

spiral 

r.= V    "   X- '^5) 

These expressions thus describe the spiral images evoked in the 

visual  field by a stimulus that is "constant", i.e., the same, in the 

limit of time resolution, over the whole family of   Q-contours.    The 

whirling character of the spiral follows from letting    d    denote time 

in the parametric form (^0)   of the visual equations, and taking into 

account the resulting time variation.    The other types of evoked images 

are more characteristic of the rest state of the visual cortex, which 

we now proceed to discuss. 

MacKay (1961) , in his researches on the perception of regular, 

spatially repetitive patterns, found that long raijge interactions be- 

tween widely separated portions of the visual field were apparently 

essential to the visual Integratxve process.    He noted four types of 

striking visual effects evoked by repeated patterns? 

(i)    "Moirl" effects, which appear as flickering shadows in such 

patterns as that of fig. 8.    They disappear upon retinal stabilization, 

and thus are apparently excited by the normal eye scanning movements. 

(il) The "subjective" colors observed in line patterns in motion 

by Erb and Dallenbach (1939). 

(iii)A 'streaming phenomenon" drifting at right anglos to the lines 

in a pattern. 

animm wa^Mii^^^MWyMfei^^^iaiflli^i^MMWSMmJsiWiill^^t^Miteituii.. t.L^julL'mt.t.u.i^tr-^v^AAit..^.^.^*^. ^ . .....        ;. 
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We now note that the cortlc&l rest state (no visual image present) 

may be described (neglecting spontaneous discharges)  by (37) and (38) with 

Q = Q   =0, i.e., 

dv 
du 

u 
v and 

dv 

du" 
v 

u US) 

A 

The corresponding second order parametric equations are,  from (A2), 

d u 

do 

d2u 

da' 

+ u = 0, 

- u    =0, 

dfv 
d«2 

d2v 

do' 

+ v = 0 

- v   = 0. 

(47) 

(4ß) 

The pair (47)  represent true sinusoidal oscillations in   u   and    v;  (48) 

on the other hand represent damped oscillations.    It thus appears that 

sustained oscillations are possible only transverse to the   u^-coordinates 

of the visual field.    We shall have more to say in this connection in 

our discussion below of the alpha rhythm. 

The integrals of (46) are well known: 

and 2       2.2 u    + v   = a v   = a u (49) 

The first represents a family of circles concentric about the originj the 

second an orthogonal family of radial lines  (fig. 11).    We note that the 

intersection of a given radial line and a given circle is enough to define 

a point in the visual field unambiguously. 

It thus appears from MacKay's work and the above theoretical result 

that stimulation of the visual cortex by a repetitive, radially symmetric 

pattern that essentially imposes a resonance on the cortical rest pattern 

(as exemplified by the curves  (49) and fig. 11)  can bring about a "ringing" 
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of the visual response in directions conjugate to the stimuius pattern. 

We note in this connection that some of MacKay's subjects that suffered 

from aatigaatism had difficulty in seeing CAI  (MacKay, 1961, p. 3^6). 

Such a situation could come about through a failure to echieve resonance 

between rtimulus pattern aid an asymmetric cortical rest state resulting 

from continued astigmatic distortion.    The usual cortical rest state, 

as indicated by (49) and fig. 11, is inherently symmetric. 

Fig. 11 Integral curve» for the differential equations of 
the cortical rest state. Note the resemblance to 
the patterns in figs. 8 and 9. 

The visual phenomena of the cortical rest state outlined above 

lo apparently bear directly upon the circular Images in the eigengrau 

described by Jung (Jung, 1961a, p. 295). 

' 

wmm 
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3.       Developmental Dyslexia aa a Variant of the Visual Differential Equations 

Developmental dyslexia is a form of specific language disability that 

appears in childhood as an almost crippling inability to read and/or write 

(Bender, 1957; Money,  1961} Stuart, 1963).     It is characterized primarily 

by an inordinately large number of confusions  of letter symbols,  especially 

reversals ("b"  for "d",  "p"   for "q",  "saw"  for "was", etc.), which persists 

well past the first year of school.    The disability is neurologically 

intrinsic:    No brain damage or significant impairment of vision or hearing 

are present, and the only emotional disturbance is  that attributable to 

continued classroom difficulties.    Since these children  (about one out of 

every ten)  are unable to learn by the "sight method", they are in a very 

real sense victims of cur standard educational system.    The situation is 

doubly unfortunate since these children seem to be extra well endowed 

with creativeness and the capacity for abstract thought  (Bender,  1957) . 

A full treatment of developmental dyslexia from the standpoint of 

visual differential equations may be found in Part II of this study. 

Here we cont'-.it ourselves with outlining only those aspects of the visual 

differential equations that appear to be involved ■'.n the reversals de- 

scribed above. 

If the sign of the slope is changed in (A6)  we obtain the new 

system 

, . dv! V 
dv1 U' j ■*■ J- /irr>\ r-^ = T ,        and    T—r = - T« (50) au'      v'   * du' u' 

■„■■ i 



"-"- 
  

u 

Fig. 12.    Integral curves for the rest-state differential equations 
with reversed slope:    conjugate families of hyperbolas. 

The integral curves for this system are the conjugate families of hyper- 

bolas (fig. 12): 

v    - u'    — a'  , and   u' ¥' = a'. (51) 

Eqs. (50) may be looked upon (see Part II)  as the rest state equations 

for a viimal Gestalt whose basic invariances are with respect to (clock- 

wise)  rotations, magnification, and glide displacements.    The esoential 

difference between systems  (46) aid (50)  is that hyperbolic, rather than 

radial, displacements are involved. 

k similar, no doubt closely related hyperbolic frame of reference 

arises in a natural way in Lüneburg's theory of binocular vision. 

The hyperbolic visual metric is probably the first to develop 

■GEH    ^,.JI:.,.  .i'; _,:: ..^. .,,, ..■•..<':. ._:,,.,;    ■:i.' ,.i.,-i ■' _,•    >   ..,.     Uiil     . ! ■. 
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in the infantile visual cortex.    Evidence for the existence of such a 

visual system during infancy can be gleaned from a study of Jesell, Ilg, 

and Bullis  (1950) .    Sometime during the early years of life - commonly 

no later than the first year of school  - system (^6)  becomes dominant. 

The alpha rhytam usually becomes well established at this  time and the 

dysrhythmia characteristic of the infantile  (and dyslexic)   electro- 

encephalograph almost entirely disappears. 

Fig;  13 is intended to indicate the symmetries in such a hyperbolic 

reference system that could bring about the letter and word reversals 

described above.    The origin in system (4,6)  is a point of neutral sta- 

bility, a so called vortex (fig. 11).    For the reversed system (50)   the 

origin constitutes a saddle point, a type of singularity that is always 

unstable.    This suggests that the foveal part of the visual field is 

inherently unstable in the dyslexic case.    As a consequence,   for an object 

near the center of vision, the visual Integrative process could jump in 

a seemingly random manner from one quadrant to another and from one branch 

of the reference hyperbola to the other.     The confusion that this would 

induce in a reading situation is not hard  to imagine.    The peripheral 

vision on the other hand should be relatively unaffected. 

The second order equations that follow from the parametric  form of 

(50)  are all of the damped oscillatiorr type: 

4 .. 
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Fig. 13 Reproduction of fig. 12 with impressed letters f'b","d", 
"q", and "p". Each letter is symmetric with respect to 
the horizontal or vertical axis separating it from the 
next, and symmetric about the origin to the letter in 
the opposite quadrant. The origin is a saddle point, 
a position of unstable equilibrium* 

This feature, too, Is consistent with the immature dysrhythmic type of 

electroencephalograph commonly enccwntered in dyslexic children (Bender, 

1957jCohn, 19^9, p. 597). 

This of course cannot be the whole story. The physiological origin 

of the slope reversal is not clear, although nystagmus and labyrinthine 

polarisation nay play a role (Jung, 196la,b). Direction of cortical 

scan, anomalous depth reversal of electrical polarization within the 

cortex (Anassian, 1961), ontogeny*,learning, and biochemical variations 

may also enter. Higher recognition phenomena must also involve the sort 

of prediction and statistical decision processes that are described in 

Section VI of this study. Even so, enough characteristic features of 

*  Which traditionally recapitulates phylogeny. 
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developmental dyslexia fit the reversed slope model - which in itself 

is based on known visual neurophysiology - to provide a working hypo- 

thesis. 

&s      The A^Ljgha ^ytto ^d^Its^es;^ 

The alpha rhythm is a more or less regular oscillation, in the 

frequency range 8-13 c.p.s., of the electric potential of the brain. 

It is most prominent in the occipital region of the head, and is appar- 

ently closel;' associated with the rest state of the visual cortex. The 

alpha rhythm appears in the electroencephalograph only when the subject 

is relaxed and resting, with eyes closed, and mind free from visualiza- 

tion or deliberation. Mental problem solving or opening the eyes (even 

in a darkened room)   result in the "desynchronization"  of the alpha * 

rhythm, i.e., its replacement by a low-amplitude oscillation of rela- 

tively rapid fluctuation. 

The frequency spectrum of the alpha rhythm is centered at about 

10 c.p.s.  (Wiener,  1958»  p. 68).     Other subsidiary peaks in the frequency 

spectrum of the electrical activity of the brain occur at about 5 c.p.s 

(the so called theta rhythm at 4. - 7 c.p.s.) and near d.c.  (the so called 

delta rhythm at 0. 5 - 3*5 c.p.s.).    The frequency range of the rapid 

fluctuations chare"teristic of alert mental activity (the so called beta 

rhythm)  is   U - 30 c.p.s.(Walter, 1953). 

The ratios between these frequency ranges are strongly suggestive 

of either subharmonic oscillations or parametric excitation (Minorsky, 

1962, Chs.  19,20).    The «defynchronization" of the alpha rhythm upon 
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presentation of a visual stimulus has much In common with such well 

known differential equation phenomena as asynchronous quenching of a 

subbarmonlc oscillation (Minorsky, 1962» Ch. 2-4) and the detuning of 

a parametric resonance by a sufficiently large frequency excursion 

(Minorsky, 1962» sec. 20.5)* 

Although subharmonlo and parametric resonance are essentially 

different In origin, they yield phenomena which are In appearance 

Indistinguishable.    In true subbarmonlc resonance the energy source 

Is external and so appears by Itself on the right hand side of the 

governing differential equation as a periodic forcing function.    In 

parametric resonance on the other hand the excitation arises through 

a periodic variation of some coefficient (or coefficients)  of a homo- 

geneous differential equation.    The essential subbarmonlc nature, how- 

ever, is present in both types of excitation.    In both subbarmonlc and 

parametric oscillations the amplitude of the resonance oscillation 

decreases with increasing detuning and eventually disappears at a 

certain critical level. 

An Inspection of the invariant differential equations (37) and 

(38) indicates that it is more with an unusual form of parametric 

excitation than with asynchronous quenching of a subbarmonlc resonance 

that we have to do in the present Instance.    The image excitation 

appears as a coefficient of the form variables   (u,v),(u ,v )    rather 

than by Itself as a driving term. 

. 
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If we consider the microtirae behavior of a single neuron, it 

displays a characteristic repetitive firing in response to a stimulus 

(Jung, 196la,b).    Although these neuronal discharges are certainly not 

strictly periodic,  they do constitute "recurrent ...otions" in the termin- 

ology of the qualitative theory of differential equations  (Nemytskii and 

Stepanov, I960)  and even appear to be almost periodic  (ibid).    The 

characteristic behavior of the neuron at    (un,vj    in the visual field 

may thus be represented as 

Q(^/7T7e&rctan(u/v)) = J(u0,v0)    I     6(t - TX), (52) 

(u0,v0) \& 

where   J    is a coefficient characteristic of the particular type 

(A>3,C,D|  cr E)   of neuron activated (Jung, 196la,b),   5(t - t)    denotes 

the delta function, and the    T^'S    comprise a relatively dense set 

(Nemytskii and Stepanov, I960)   of time intervals characteristic of the 

neuronal type involved.    J(u0,vn)    vanishes if the neuron at    (un,vn) 

is not activated by the visual stimulus. 

It is clear from the second order visual field equations  (^l)  with 

(52)   for the image function    Q,  that it is a radically different form 

of the differential equation of parametric excitation - if indeed it 

can be called that at all - that is involved.    In fact the individual 

equations resemble more, perhaps, a sort of generalized Litnard equation 

with generalized functions as coefficients.    Although conditicv.s for 

the existence of a periodic solution of the Lienard equation ei-e vll 

known for continuous coefficients and periodic forcing function (Cea-.n, 

1963)» nothing is apparently known about the badly discontinuous case 

exemplified by combining (£l)  and (52). 
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To obtain some idea of the behavior of   u   and   v   under auch 

circuastanoee, let us transpose all terms containing   Q   in (41)  to 

the right hand side and consider the equivalent integral equation 

Involving generalised functions (Kaplan, 1962) t 

t dun 
u(t) ■ ^ sin t + K2 cos t - J(u0,v0)  2   I sin(t - t«)[*(t'  - \)ij^ + VQ) + 

+ fc?(t' -TK)u0]dt', (53) 

t dv. 
v(t) = ly sin t + K^ cos t - J(u0,v0)  r   5 sin(t - V)[h{V  - TX) (u0 - j^)  - 

- 5'(t' -TK)v0]dt', (5A) 

where [tt]   denotes the set of ^ <£ V Evaluation of the integrals in 

(53) and (54) by the usual foxwlas of the theory of genertliaed functions 

leads at once to the forms 

u(t) = sin tta  - J X [u^-gsin ^ ♦ v0(tK)cos tjl   + 

. 

(55) 

and 

+ cos t JK2 - JACu^t^oc» Tä - v0(TÄ)sin xjj , 

v(t) « sin ilK; + Jfr. [u0(tx)cos Tä - v0(tÄ)sin TJ? ♦ 

+ cos t JK^ - J Z ru0(^)fin xÄ + V0(Tä)COS xjl . 

•56) 

If these expressions are to «atlnxy (40)  also, then ve must have 

14 = - K2,      K^ - Kv (57) 

, 
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and the following system nust hold as well: 

. Z sin x   + K- Z cos T. = J 2 [uJx )  Z COB{%    - x )   - vJi ) Z sin(T    - ^ )} 

(58) 

-K . Z cos T, + K« Z sin x   = - J Z fuJx ) Z sln(T    - T )  - V-(T ) I COS(T    - t )] 

Solving the system (58) and putting the result and (57)  back into 

(55) and (56), one finds, after some straightforward trigonometric reduc- 

tions, the almost periodic solutions 

u(t) = >XT( ^l-n(^), 2 .C08(t-t#+tii-Tu)-vn(^)^ Z jlnCt-K^-tJJI 

(59) 

and 

v(t: = 

Z   008(1^-^) 7 ^iü(,t>f)cos(t-TÄ)+v0(i:Ä)sin(t-fJ,)] 
1,1* > j 

JUn»vJ 

)• 

Z   cos 
0»vJ        / 
TTT ~ rl-ZhiJ'C )    Z    sin(t-T +T -T )+vJ'c )    Z   cos(t+T ~x -T )] 

^»v} [^v) 

+     Z   cosCa -T ) Z [UJT )sin(t-.T )-v (x )cos(t-x )]) . 
^,vj ^   v {äJ    

U   * 0   " «    / 

(60) 

The almost periodic character of the   u,v-oscillations excited by a 

neuron at    (u-.,^)    firing at times   x.,x,*,,,t    (^ t)    is evident from 

inspection of (59)  and (60).    If the neuron is of Jung's type A, which 

discharges more or less regularly without a specific stimulus, at a 

frequency in the alpha range (8 - 15 c.p.s.)» then the oscillations 

determined by (59)  and (60) will have the observed characteristics of 

the alpha rhythm.    If a visual stimulus is presented, on the other hand,so 
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that the    [%n]   sequence Is that of the more rapid and Irregular dis- 

chargee characteristic of neuron types B and D, and C and E,  then a 

"desynchronisation* of the A-type oscillation would appear.    If we now 

suppose that the stinulus point    (u0,v0)    ranges over all the cortical 

neurons that are activated in the visual field (i.e., J   now represents 

a sumftion over these   (UQJVJ), then it is clear that we have an almost 

periodic oscillation with a distributed excitation.    Qualitative versions 

of this result have been given by Laahley and Shell (iholl, 1956). 

We should not lose sight of the fact that the relatively dense set 

(v.,...,^)    is essentially a random sequence as well.    It is therefore 

natural to associate an oscillatory random process f* Id, 195A» p. 15) 

with it.    The more or less regular oscillation of the alpha rhythm may 

then be viewed as an instance of Slutzky and Romanovsky's "sinjoidal 

Halt theorem" (Slutsky, 1937), the burden of which is that even with a 

purely random series, repested pairwise moving averages and    m     order 

differencing will generate a cyclic variation, which in the limit is 

sinusoidal. 



' 

A3 

VI.    STATISTICAL DECISION AND PREDICTION THEORY 

The Lie group operatlone that we have considered» and the invariant 

differential equations (37) and (38)  that follow from them, have involved 

only very basic aspects of the visual integrative process.    In actuality, 

however, visual pattern recognition seems to be a sta^ewise process in 

which the mind goes through a rapid series of comparisons with what it 

already knows.    Eventually, in proper Gestalt fashion,  things click into 

place and we recognise the pattern for what it is.    Learning can often 

shorten this puzzling over a given pattern quite considerably, which 

again indicates the prominent role of memory and prediction in the recog- 

nition process. 

Such considerations as these lead us at once into the domain of 

statistical decision and prediction theory.    !Iüt a great deal is known 

in this connection for the sort of functional equations that are involved 

in the visual integrative process.   Research on the statistical aspects 

of Lie groups is only little more than a decade old (Brilllnger, 1963J 

Grenander, 1963), and more work in this field is needed before a pre- 

diction and decision theory fully adequate for our purposes can be 

formulated.    Brillinger's main theorem (Brillinger, 1963» p. 495) seems 

to be the closest available result and would apparently suffix for the 

basic aspects of the visual Gestalt if suitable decision procedures and 

risk functions could be prescribed.   This auproach will be discussed in 

detail in a later part of this study devoted specifically to memory and 

statistical prediction and decision theory. 
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With regard to statistical invariance In general and the prediction 

theory for linear systems of random differential equations» ve are in 

a somewhat better position (Bartlett, 1955; Beutler, 1963} Doob» 1953} 

Lehrasum, 1959* Shiryaev, 1963} Uealer» 1959).    The restricted minimax 

and modified minimax (or "slicing11)principles (Hodges and Lehmann» 1952} 

Wesler, 1959) are each directed toward making maximum use of previous 

experience in a statistical decision procedure, and thus appear especially 

appropriate in the present context.    Wesler's approach, via partitioning 

the set of states of nature (images)  into subclasses or "slices" »exhibits 

the stagevise sort of decision procedure that appears to be involved in 

visual pattern recognition* 

Tne visual differential equations Uo) and (40jf with mamory, would 

seem to be a vector, predictive form of the stochastic differential equa- 

tion studied by I to (1951) end others.    Systems whose parameters vary 

randomly in time, i.e., random parametric excitation, have also received 

study (see Bogdanoff and Koain (1963)» or Caughey and Dienes (1962), and 

the references given there), but no prediction theory appears to have 

been foroulated.   Some parts of the theory of random parametric excita- 

tion are still controversial, and such remains to be done here also.    The 

random differential equation aspect, as well as that of the modified 

minimax decision principle briefly mentioned in the preceding paragraph, 

will also be iak^n up in a later part of this study devoted to statistical 

questions. 

The introduction of atatistictl decision and prediction theory 

automatically raises the matter oi' nmiory.    The relative roles of bio- 

molecular (J^den, 1960} Hyd^n and EgyhAzi, 1962, 1963) and neuronal 
■ 

. 
^ 

■   ( 
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(Dingman and Sporn, 1964) mechanisms in animal memory is immaterial to 

our memory model*    Chaagea in the truvel time of the electrical nerve 

impulse through the neural net arising out of either local biochemical 

modification of the neuronal electrical conductivity or dendritic 

lengthening through axoplasmic flow could account for memory phenomena 

in terms of oscillations in systems with time retardations (Minorsky, 

19621 Ch. 21).    Even though the number of time lags Is finite, the 

difference-differential equations that are involved in such retardation 

phenomena always have em infinite spectrum, i.e., such a system can in 

principle oscillatt at an infinite number of frequencies,  thus providing 

unlimited memory cflpac^ty.    In practice the retardations cause damping 

of the oscillations, so that only a finite number of ccrnonents contribute 

significantly to any given oscillation.    In many respects these retarded 

oscillations resemble autcregresaive schemes  (Wold, 1954) > and the 

phenomenon of parametric excitation, which has been discussed briefly 

above and in sec. V.4> is also involved. 



   ■   ■ '  *pm 

46 

VII. CGNCLUSIQN 

I 
■ 

The material covered in this report divides naturally into three 

categoriest    (i) the cortical counterpart of the method of isoclines, 

the visual Gestalt in' terns of Lie group operations, and the invariant 

differential equations of the visual Integrative process; (il)  comparison 

with experimental evidences    flicker phenomena, complementary after- 

images, developmental dyslexift as slope reversal in the visual differ- 

ential equations, and the alpha rhythm and its ndesynchronizationn| 

(iil) memory and recognition in terms of statistical decision and pre- 

diction theory.    Only (i) has been given a full treatment here.    Detailed 

- xposltions of the role of slope reversal in developmental dyslexia and 

the statistical decision and prediction theory required for a fuller 

explanation of Gestalt and memory phenomena will be reserved for separate 

publications. 

■ 

Two other Important aspects of visual pattern recognition have not 

been discussed in this part (I)  of the study, vis«, the cortical dif- 

ferential processes involved in the recognition of motion and curvature 

and the neuronal interconnections required by the isocline model and the 

visual differentia?, equations (37) and (33) •    The former is easily 

handled In terns of the well known calculus formulas s 

v x&» ft ^i t v(     dt      0 do ' 

ar = 
dt2 

ft2 dL£ + H d£ 

dc2 ^ 

(61) 

(62) 

tfMjMa» n,   



while, for fixed time, the curvature is given by 

«(s) = [(d4)2 + (4)2]]/2. 
ds2 ds2 

or 
.2_     .     ,2 

(63) 

«(e) = (*udS    dvdWd^ + ^2^/2. ^ 
dö df       dö dö 

In these expressions    C   denotes either   u    or   v,    V-    is  the velocity 

in the    K   direction, t   is time (a dot over a variable inaicates dif- 

ferentiation with respect to time),    e    is the cortical parameter (phase, 

time, or whatever) ,    a^.    is the acceleration in the    ^    direction,   * 

denotes local curvature, and    s    represents arc length. 

Whether the simple fields are actually interconnected within the 

cortex in such fashion as to process first and second derivatives according 

to the prescriptions in (61)-(64.)  is an open question.    However, many 

investigators have noted the necessity for something that is at least 

equivalent to th se operations.    Ao Granit (1962, p. 756)  puts it, 

"... the cortical response ... is adjusted so as to emphasize everything 

that involves discrimination, i.e., sraall fields, direction, movement, 

contrast, almost as if it were taking the second derivative  ...",    We 

further noted in our discussion of Hubel and Wiesel's work (sec. II) 

that, while both simple and complex fields were sensitive to motion 

of the light stinulus, the complex fields were esprcially so.    This 

suggests that the simple fields are interconnected within the complex 

fields in such a way as to estimate (61)   and (62).    Such cortical com- 

putation could be accomplished either by further reciprocally anta- 

gonistic inhibition of the first differences given by the simple fields 
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or by a further api, Icatlon of the method of iaocllnea (Cuxmiiagham» 

1958» sec. 3.3) to differential equations like U2) and (Uj. 

Concerning the neuronal interconnections involved in the simple 

fields that en&ble the cortex to solve (4.0) and (40 )    approximately, 

there does not appear to be enough neurophysiologioal data of the right 

type to permit precise statements.    A start in this direction has been 

made by Qerstein and Clark (1964), but even then their work is not oriented 

toward the differential properties of the neuronal interactions.    The 

history of oytoarchitectural studies of the cortical neurons is well 

set forth by Sholl (1956), but this bears much more on structure than 

on function11. 

The inhibitory character, both reciprocally antagonistic (time) and 

lateral (space), of the neuronal action suggests that first and higher 

differences are bound to play an important role in the network of 

neuronal interconnections.   The work of Fessard (1961) is of considerable 

interest in this regard.    "M further note that such difference operations 

are not inconsistent with the autocorrelation principle advanced by 

Reiohardt (1961), since the latter is implicit in such difference opera- 

tions aa 

I 

. 

2^ average(C.  - O    = variance(0  + varianceUg)  - 2 covariance(?;,,0 • 

whenever   average(0  = average(0. 

* Even so, the reaemblance between the structural character of the 
principal types of neuron present in the cerebral cortex (Sholl, 1956) 
and the three types of components (i.e., sets of trajectories)  that are 
possible in such systems as (40) or (4CÜ  1^ tbey are to be structurally 
stable (De Baggis, 1952)  is worthy cf note. 
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This concludes Part I of the study*    Subsequent parts will deal 

in detail with slope reversal in the visual differential equations and 

developmental dyslexia» statistical decision and prediction theory for 

visual memory and Gestalt, and the information theoretic aspects of 

pattern recognition by the method of isoclines. 
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